```
    R E P O R T R E S UNMES
```


ED 010291

PROBLEM SOLVING AS A FUNCTION OF LINGUAGE. BY- STAFFORD, KENNETH R. ARIZONA STATE UNIV., TENPE REPORT NUMBER CRP-2944 PUB DATE, 31 AUG 66 REPORT NUMBER BR-5-0609
GRANT OEG-6-10-0121
EDRS PRICE MF-\$0.09 HK- $\$ 1.64$ AgP.
DESCRIPTORS- *PROBLEM SOLYIRIG, BINGUISTICS, LANKUAGE LABORATORIES, *LANGUAGE SKILLS, *NAVAHO, *BILINEUAL STUDENTS, *TASK PERFORMANCE, SEMANTICS, COMHUNICATIONS, TEMFE, ARIZONA

THIS RESEARCH ATTEMPTED TO RELATE PROBLEM-SOI.VING BEHAVIOR TO LANGUAGE BY FINDING RELATIONSHIPS EETWEEN (1) PROBLEM SOLVING AND LANGUAGE TYPE AND (2) PROBLEM SOLVING AND CATEGORIES OF BILINGUALISM. ENGLISH-SPEAKING MONOI.INGUAL AND TYPES OF EILINGUAL NAVAHO EIGHTH-GRADE PUPILS WERE: CCiipARED ON PROBLEM-SOLVING TASKS. IO AND READING COMPREHEIHSION WERE CONTROLLED. FIMDINGS INDICATED THAT THE COMPOUND BILINGUALS DID LESS WELL THAN COORDINATE BILINGUALS AND ENGLISH-SPEAKING MONOLINGUALS, BUT THAT THERE WAS NO DIFFERENCE BETIVEEN THE COORDINATE BILINGUALS AND THE MONOLINGUALS. DIFIERENCES WERE EXPLAINED IN TERMS OF OSGOOD'S TWO-STAGE MEDIATION MODEL AND INTERFERENCE. IMPLICATIONS FOR THE LANGUAGE TRAINING OF BILINGUALS WERE MENTIONED. (GD)
U. 2 g DPARTNEATT OF HEALTH, EDUCATION AND WIITARE Offlee of Eductition
Thin chackment has beon reproduced axnotly as raolved frem tity sereen or oncanivation orlgrating R. Points of viww of ciriome
 promon or pertays

pROBLEM SOLUTING AB A RUNGTION OF LaNGUAGE

Kenneth R. Stafford

Final Report
Cooperative Research Project Number 2944
Research Branch
Grant Number 0E 6-10-012

The Research Reported Herein Was Supported
by a Grant from the
United States Dapartmant of Health, Education, and Welface
Office of Education.

Department of Counseling and Educational Paychology
Arizona State University
Tempe, Axtlzona
August 31, 1966

ACKNOWLEDGREENTS

I am indebted to the participating faculty and staff, Mr. William Martin, Superintendent, and Mr. Stanley Van Keuren, counselor, of the Ft. Defiance-Window Rock Public School System. Similarly, gratitude is extended to the participating faculty and staff and Mr. Joseph Katthews, Superintendent, of the Chinle Public School System. Their cooparation ia sincerely appreciated.

Dr. Joel Benedict and his staff at the Arizona State University Audio-Visual Center were most helpful with instrumentation.

Punch card data decks were prepared in the Testing Service at Arizona State University, and statistical analysas were done in the University Computez Center.

Mr. David Phillips, the graduate research assistant on this project, deserves thanks for his varied assistance, ranging from battling snow on an Indian reservation to administering testis and processing data. Dr. Irvinfs Stout gave valuable, time-saving ansistance regarding initial contacts with officials, for which I am grateful.

My wife contributed by making tables, figures, and typing and by bearing with the whole thing.

TABLE OF CONTENTS

I. Overview 1
II. Problem 4
III. Method 7
IV. Results 12
V. Diacuasion 14
VI. Sumaxy 16
APPGidix A. Raw Data, Ft. Dafiance and Chinle
B. QuestionnaireC. Sauple Duaignai on Film Stri.pD. Covariance Tables, Adjusted Means, and StandardStrors of Adjusted Heans
kstaremens

Problem Solving as a Function of Language

I. Oyerviev.

Contemporary intarest in the linguiatic relativity hypothesis traces largely to the dascriptive-apeculative work of Whorf (1939), who broadiy auggested that cognitive behavior of individuals is determined by the language syetem they use. Only recently have paychologists begun to nove beyond anthropological descriptions to controlled experimantation. In an extension of the Brown and Lenneberg (1954) codability study, Lennaberg and Roberts (1956) found that differences in codubility of colori between Zuni and English produced differences in recognition and mamory of colors for spaakers of these languages. Castoll and Camagrande (1958) explained differences in clasaificatury behavior lsetween Mavaiwo speakers and English apeakert in tarms of Mavalio gramar. Suci (1960), in one of the many croserculturai mmantic differential studies, found that the three commonly detected factors (avaluation, potency, activity) eccounted for only 39% of the total varianse, not the uavel 66%. Additional factors ara apparently involved when iravahos interact with their enviromment. The present investdgation wes conceived and motivated in this contesxt.

It wes the task of this project to relate problum-solving behevior to language. This was to be whe by finding relationships
between (1) problem solving and language typaland (2) problem solving and categuries of bilingualism. Navaho and English were she languages chosen. With the assumption that solutiona to problems used involve madiational processes, the following experimental hypotheses were made: (1) Since - it was assumed - Navahc evolved largely as a thing-based, nature-bssed language, in contrast to Indo-European idea-baned languages, Navaho-apeaking individuals will not do as well as English-apeaking persons on tasks placing great demand on encoding and manipulation of encodings. (2) Bilinguals who encode and manipulate equally well in both languages will exparience greater interfarence than monolinguals or bilinguals dominant: in one language, which will reduce problem-solving afficiency.

These hypotheses were to be teated by presenting problems to four groups of Navaho subjects presumably alike except for the independent varlable, language: namaly - Natiaho apeaking; English spaaking; bilinguals who learned Navaho and English in the same context, 1.e., at home before starting achool; and bilinguals who learned Navaho and English in differeat; contexts, i.e., English after atarting school. Subjecte were to be drawn from the eighth grade level in public schools at Ft. Defiance and Chinle, both on the Navaho Reservatllon in Northern Arizona. The stody was to bagin in Ft. Defiance and was to be replicated in Chinle.

Only three of the experimental Navabo groups were available at Ft. Defiance: English speaking, compound bilinguals, and coordinate bilinguals. Only two were found at Chinle: compound and coordinate bilinguals. It was not feanible to select extramural 14 - 16 year old

Navaho-speaking Navahos aince the language variable might be confounded with other cultural-educ-tional-intellectual variables. For the İavaho-Engliah comparison, an attempt was made to select 6 - 8 year Navaho-speaking and English-speaking Navahos from the Ft. DefianceWindow Rock Sthools. This mat with failure since gaining raliable data with the experimental apparatus from 6-year-old Navaho-speaking Navahos was mont impractical - even with the aid of a native interpreter known by the suibjacts.

Five problems were to be used with the experimantal groups, based upon previous exploratory work with Navahos at Phoenix Indian School. Problem number 5 proved to be too difficult for the aubjects at hand; it was elininated. Because of a mechanical failure, problem number 2 wae given to approximately one-half of the Ft. Defiance compound and coordinate groups.

In addition to the aeparation made dependent upon when English was learned, another was made according to whether bilingual subjects used both languages or only a single language to solve the experimental problams. This was done by simply asking each subject, upon completion of all problams, which language or languages, if either, he used wile doing the task.

With these modifications the study proceeded.

II. Problem.

In a paycholinguiatic theory of bilingualiam, Ervin and Osgood (1954) speculated that the kind of bilingual system developed by bilingual is related to whether the two languages were learned in associated or disassociated contexts. Two languages learned by an individual in the same contert constitutes a compound system. Learning Navaho and Inglish simultaneously is an example of this. Tyo languagez learned by an individual in different contexts conatitutes a goordinate system. Learning Engiish in school after having mastered Navaho during pre-school years at home is an example of this. For comound bilinguals, cross-linguistic learning should be essentially the same, merely being two different ways of encoding the same referential meanings. Foi coordinate bilinguals, the referential meanings encoded in the two languages should differ markedly. It follows that there should be a greater amount of interference between languagas in the case of the compound bilingual, reducing the efficiency of cognitive behavior. Evidence of meaning aimilarities and differences for compound and coo Inate bilinguals respectively was obtained by Lambert, Hiavelka, and Crosby (1958). Semantic differential profiles for worá equivalenta in French and English showed greater divergence in meaning for the French-Englich coordinate bilinguals than for the compound bilinguals. This was replicated by Stafford and Van Keuren (1966) using Navaho-English compound and coordinate bilinguals,
with much maller profile differences, however.
In a retroactive inhibition experiment, Lambert, Havelka, and Crosby (1958) found that compound French-English bilinguals benefited (on relearning a series of English words) from an interpolated list 0 :ar French equivalents, whereas the cooriinate bilinguals did not. This supports the Ervin-Osgood theory that there is greater chance for interference in compound bilingual systems. Lambert and Jakobovits (1960) provided additional support for the probability of interference in the case of compourd bilinguals. They found compound bilinguals to exhibit greater cross-linguistic semantic satiation effects; that is, theres was more transfer of semantic satiation effects from language to language among compound bilinguals thein among coordinate bilinguals.

These studies have related types of bilingualism to meaning similarities and dificsences, transfer effects. and semantic satiation effects. In further exploring the implications of the Ervin-Osgood theory, it shouid be of interest to investigate the relationship between compiex mental processes, such as problem solving, and kinds of bilingualism, as well as monolingualism (where there should be no interfarence effects).

The present study tested three experimental hypotheses.
(1.) Performance on problem-solving taske will be poorer for compound bilingual groups than for either the monolingual or coordinate bilingual groups. That is, compound bilinguals will solve fower problems and require more trials in their efforts to get solutions.
(2.) Performance on problem-solving tasks will be poorer for the coordinate bilingual groups than for the English-speaking monolinguals. Coordinate bilinguals will solve fewer problems and require more trials to get solutions.
(3.) Performance on problem-solving tasks will be poorer for bilinguals using both languages for solutions than for bilinguals using only one language for solutions. Bilinguals using two languages will solve fewer problems and require more trials for solutions.

III. Mathod.

Apparatas.- In testing the hypotheses of this experiment, it was necessary to devise problems which required of subjects encoding, storage of encodings, and manipulation of encodings. An automated, portable problem-presenting apparatus* was developed for this purpose. It was designed so that problems shnuld be equally fair to English-speaking, bilingual, and non-English-speaking Navahos; that problem difficulty could be systematically varied; aud that, the exact number of trials to criterion (solution) could be determined. On the face of the device (see Fig. 1) is a screen divided into quadrants; beside each quadrant is a control button to be operated by the subject; above the screen is a aignal or reward light. A square and a triangle are flashed on the screen in separate quadrents. The subject presses a button. If it is the correct one, the reward light flashes. Each time a button is pressed the figures change position. Ten consecutive reward light flashes were construed as a solution; 100 trials were allowed for each problean before presenting another.

The experimental task consisted of four progressively more difficult problems, the relative difficulty of which was determined empiricaily by ascertaining the number of problem solutions and irials

[^0]

Figure 1. Schematic diagram of the pioblem-presenting apparatus
to critarion occuriag in a preliminary test of aimi?ar aubjects. Rach problewa was in a film cartridge designed for the device and each problem was visibly but easily placed in the machina by the exparimenter in full view of the subject. The subject not only saw the old problem removed and a new one replaced, but was told that the next problem would be different. The stimulus configurations on the film strips (which, of course, appeared on the screen of the device for the subject) were randomly arranged se that no pattern, other than the desired experimental pattern (e.g., button by the square), led to consistant raward light flashes. The problems were arranged in order from least to most difficult and presented to each subject in that order. An easy problem, for example, could be solved by pressing the button by the triangle; a difficult problem could be solved by pressing the button by the square when the square and triangle are side by side and by pressing the button by the triangle when they are diagonal on the screen (which requires more complicated representation and places greater demand on cognitive processes). The solution of every problem involved pressing a button contiguous to a figure; the solution of every problem was different. The gubject was required co discover these facts for himself and thus each succeeding problem made an increased demand on his memory and reason.

The probleme were given to each subject individually under standardized conditions in a familiar setting in their school. Direction were given verbally in English, and a demonstration problem was used as an illustration of what was expected. The
demonatration problam (similar to but much simpler than the four experimental problems) wae placed in the machine, the experimenter methodically pressed buttons to show the subject how the configurations changed on the screen, then how pressing certain buttons caused the reward light to flash. The subject then was allowed to do this, continuing until he was able to get a light flash every tive a button was pressed. When complete understanding of the task was assured, the first experimental problem was presented. In order of presentation the problems were:

Demonstration problem: The button by the square (Only the square appeared on the acreen.)

Problem \#1: The button by the triangle (On this and all subsequent problems a square and a triangle appeared on the screen.)

Problem \#2: The button by the figure on the lower half of the scraen.

Froblem \#3: The button by the square when on the right ade of the screen; the button by the triangle when on the left side of the screen.

Problam 4 : The button by the square when figures are side by side on the ecreen; the button by the triangle when figures are diagonal on the screen.

The method umploysd in determining aingles and both language solutions among bilinguals merely involved the somewhat subjective
expadient of asking them, upon completion of the session, which language or languages, if either, they used in attempting solutions. This was done at Chinle only.

Population. The subjects sere chosen from eighth grade sections of Navaho pupils in the Ft. Defiance and Chinle Public Schools. This level provided the largest pool of homogeneous subjects - very prob. ably more like each other, except for language, than eighth grade pupils in a larga city public achool. There was also some assurance at this level of sufficient mental maturity and adequata grasp of English to cope with the oxperimental situation. From the Ft. Defiance population, three groups wara formad with the aid of a questionnaire which revealed the nature of English learning. Pupils who learned English and Navaho in the sams context (simultaneousiy before starting to sciwool) ware placid in the compound bilingual group; those who learnod English and Mavaho in different contexts (Navaho at home during preschool years anl English after starting to school) were placed in the coordinate liilingual group; and those who learned Englisit only were placed in the monolingual group. From the Chinle population, two groups were forised by means of the same questionnaire compound and coordinate bilingunl groups. Means and standard deviations for age, $I Q^{*}$, and reading comprehension*, plus sex distributions, for the population samples are given in Table 1.

[^1]TABLS 1
Sex Distributions, Means, and Standard Deviations for the Popalation Samplez

	Sex		Age		IQ		Read.Comp.	
	M	\underline{T}	H	SD	n	SD	H	8D
Ft. Defiance								
Compound	6	12	14.8	. 60	${ }^{-}$	10.7	5.1	1.5
Coordinate	13	11	14.9	. 60	78	10.0	4.7	1.3
Honolingual	12	8	13.8	. 67	98	17.2	6.4	2.2
Chinle								
Compound	9	14	14.7	. 60	90.6	10.3	6.6	1.4
Coordinate	9	11	14.7	. 59	85.9	10.8	6.6	1.3

IV. Remlte.

In relating independent and dependent variables, a Fisherian design was used, analyais of covariance and the test. The independent variables wers linguiatic clasifications: types of bilingualim, monolingualism, and whother aingle or both languages of a bilingual system ware used. The dependent variables wera total number of trials made in attempting solutions to all problem and percentage of problems solved. For exmule; if a subject sailed to solve all four problems, a trial score of 400 was assigned; if a subject solved ona of the four whin 50 trials, he received a trial score of 350 . If a subject solved thisee of the four problems, his problem score was .75; or two of three, .66.

In every analysis, IQ was the covariate. As a test of whether knowledge of Inglish (reading couprehension scores) differed significantly for the experimental groups, an analyais of covariance (IQ covariate) was done with data from the combined Ft. Daflance-Chinle groups. No differences were evident.

The research strategy involved a replication (in order to make comparisone between highly homogeneous groups); pooling data from both population areas (to incrase the power of statiatical tests); and a comparison of bilinguals reaching solutions with either one language or both (to check for concordance batween performance here and bilingual types). It was the belief of the experimenter that if a "concatenation of evidence" should amerge, the hypotheses would be
strongly supported - even though the differences in many instances might not reach the conventional .01 and .05 levels. Findings are presented in Table 2.

Inspection of Table 2 reveals that the first hyyothesis was supported. Predicted diractions of diffarences wexe born out in every case; only one of 10 tests showed ne statistical significance (compound ve. English for problems, Ft. Defiance). The second hypothesis was not supported. There were direction reversals in two inatances (coordinate vs. English for trials and problems, Ft. Defiance), one of which was statistically significant. Another comparison ahowed no significance (coordinate vs. English for problems, combined), however, the direction was as predicted. Two of 4 tests showed no significance; 2 of 4 revealed direction reversals suggesting no differences at all between coordinate vs. English for these particular problem-solving situations. The third hypothesis was supported. Predicted directions of differences were verified, and differences were algnificant.

V. Discuscion.

Basic to the Ervin-Oagood theory and the hypotheses formulated in this study is Oageod ${ }^{\text {s }}$ s (1953) two-stage mediation model. In aign (S) learning, it is auggested that a portion (r_{m}) of the total xnnponse (R_{T}) to asignificate (\dot{S}) becomes associated with the formerly neutral aign. The r_{m} or meaning response is the occasion for selfstimulation (\bar{m}_{m}), which can become associated selectively with instrumental acts $\left(R_{X}\right)$. This is illustrated in Fig. 2. With this model, predicted differences can be illustrated for the monolingual, the coordinate bilingual, and the compound bilingual. The monolingual typicaliy associates one sign with one significate and learns to respond instrumentally in a definite way. Fig. 2 shows this. No mediational interference would be expacted. The coordinate bilingual, in learning languages in separate contexts, associates a word in one languaga (S_{1}) with a meaning response $\left(r_{m_{1}}\right)$ in a certain context, and associates a word in another language (S_{2}) with a second meaning response $\left(r_{m_{2}}\right)$ in a different context. Both $r_{m_{1}}$ and $r_{m_{2}}$ occasion $\mathrm{s}_{\mathrm{m}_{1}}$ and $\mathrm{s}_{\mathrm{m}_{2}}$, which may become associated with two different instrumental acts. See Fig. 3. Little or no mediational interference would be expected aince 5_{1} and S_{2} elicite different meaning reaponses. The compound bilingual, in learning languages in the asme context, associates the two sign equivalents (S and s) with essentially the same meaning reaponses (\mathbf{r}_{m} and $\boldsymbol{r}_{\mathrm{m}}^{\prime}$). Nediational interferance would be expected in the interplay of languages, particularly

$$
\begin{aligned}
& \dot{s} \longrightarrow \mathrm{R}_{\mathrm{T}} \\
& \mathrm{~s} \longrightarrow \mathbf{r}_{\mathrm{m}} \longrightarrow \longrightarrow \mathrm{~s}_{\mathrm{m}} \longrightarrow \mathrm{R}_{\mathbf{X}}
\end{aligned}
$$

Figure 2. Two-stage mediation model

Figure 3. Two-stage mediation model related to coordinate bilingualism

Figure 4. Two-stage mediation model related to compound bilingualism
in che case of complex problems where subtle behavior is involved.
These paradigms plus the concept of mediational interference provide an explanation of the findings of the present study. Apparentiy coordinate bilinguals tend to function with one language at a time. In the Chinle experiment the ratio of users of both languages to users of single languages among coordinate bilinguals wes 1.5 to 1 . Compound bilinguals, it seems, tend to function with two languages at a time. The ratio of users of both languages to users of single languages among compound bilinguals was 3.6 to 1. An implication of this study is the desirability of minimizing the chances of mediational interference among bilinguals by emphasizing the cievelopment of coordinate systems. An important follow-up study would be to devise a controlled experiment in which Navaho bilinguals, both compound and coordinate, attending our conventional Reservation schools are compared with coordinate bilingual Navahos who have undergone a special language training program. Mediational interference should be avoided if Navaho-speaking children, upon entering a residential school, are exposed to suitable language-learning experiences: namely - common referents associated with English words, then word combinations which embody basic English syntax, and then, perhaps, phoneme-grapheme correspondances. It may well be that after one or two years of concentrated work with the English language, the other academic subjects can be studiec without the handicap of mediational interference.

VI. 8umany.

English-spaaking monolingual and types of bilingual Kavaho aighth grade pupila were compared on problem-solving taska. IQ and reading comprahension were controlled. Predictione were made that compound bilinguals would raquire more trials in attempting to solve the experimental problems and solve fewer of them than would coordinate bilinguals, and also that coordinate bilinguale would do poorer than English-apeaking monolinguals. Findings indicated that the compound bilinguals did less well than the other two groups, but that there was no difference between the coordinate bilinguala and the monolinguals. Differances ware explained in terms of Osgood's twowstage mediation model and interference. Implications for the language training of bilinguala were mantioned.
APPEIDIX A

Questionnaire Used to Determina Type of Bilingualism

Name \qquad ,Age \qquad Section \qquad

Please anawar aach quastion by chacking (\triangle) the one right place.

1. Whon did you learn to apeak Rnglish? (check one)

Before startins to school \qquad
After starting to school \qquad
2. If you know Havaho, when did you learn to speak Navaho?

Before atarting to achool \qquad
After stareing to achool \qquad
3. Which language do you apeak at home?

Mavaho \qquad
English \qquad
Both \qquad
4. When you do your work in school, do you think in

Mavaino \qquad
English \qquad
Both \qquad
5. When you think at your home, do you think in

Mavaho \qquad
knglish \qquad
Both \qquad
6. When you read these quastions, did you think at all in

Havaho \qquad
Bnglish \qquad
Both \qquad

APPEAOIX C
Sample Designs on Film Strips

APPEMDIX D

Covariance Tables, Adjuntad Keans, and 8 tandard Errore of Adjusted Mema

ANALYSIS OF COVARIANCE TABLE
Total Iumber of Triats, Fto Tefiance Sanpleg

ANALYSIS OF COVARIANGE TABLE

ANALISIS OF COVARIANGE TABLE

ANAEYSIS OF COVARIANCE TABLE
\% of Problems Solved, Chinle Samples

GTGYI gDNFIY甘 AOD 20 SISXTVNV

NULL HYPOTHESIS. NO DIFFERENCE AMONG TREATMENTS AFTER

TABLE OF ADJUSTED MEANS AND STANDARD ERRORS			
TREATMENT			
NOREATMENT	ADJUSTED	SE ADJUS	
MEAN	MEAN	MEAN	
1	223.7805	223.8900	12.0
2	197.6136	200.2213	12.0
3	158.7500	152.7887	18.5

GIG甘I 马DNVI甘V 100 aO SISXTVNV

ETAYE BOMVIXVAOO 50 SISATVMV
Total Number of Trials, Single or Both Languages, Chinle samples

ANALYSIS OF COVARIANGE TABLE

ANALYSIS OF COVARIANCE TABLE

NULL HYPOTHESIS. NO DUFFERENCE AMONG TREATMENTS AFTER
ADJUSTING WITH COVARIATES.
F(2, 101)= 0.180
NULL HYPOTHESIS. NO DIFFERENCE AMONG TREATMENTS AFTER
TABLE OF ADJUSTED MEANS AND STANDARD ERRORS

TREATMENT TREATMENT
NO.
MEAN

1

| Fi | 2. | 101)= | 0.180 |
| :---: | :---: | :---: | :---: |F12. 101)-

Fi	2.	101)=	0.180

REFERMCES

Brown, R. W., and Lenneberg, E. H. A study in langüge and cognition. J. elbnorme soc, Peychol., 1954, 49, 454-462.

Carroil, J. B., and Cauagrande, J. B. The function of language classifications in behavior. In Maccoby, Newcomb and Hartlay (Eds.), Readings in sociel perchology. (3rd Ed.) Hew York: Holt, 1958. Pp. 18-31.

Ervin, S. M. and Oagood, C. E. Second language learning and bilitrgualism. In Osgood and Sebeok (Eds.), Paycholinguistics: A survey of theory and research problems. J. abnorm. and soc. Paychol., 1954. 49, (4, Part 2), 139-146.

Lambert, W. E., Havelka, J., and Crosby, C. The influence of languageacquieition context on bilingualism. J. ebroorm. sac. Paychol., 1958, 56, 239-244.

Lambert, W. E., and Jakobovite, L. A. Verbal satiation and changer in the intenaity of meaning. J. exp. Paychpl., 1960, 60,376-383.

Lenneberg, B. H., and Roberts, J. M. The language of experience: a study in methodology. Supplement to Int. J.Amer. Ling., 1956, 22, BO. 13.

Oagood, C. E. Kathod and theory in experimeneal paychology. New York: Oxford, 1953.

Stafford, K. R., and Van Reuren, S. R. Semantic differential profiles as related to monolingual-bilingual types. Unpublished paper, 1966.

Suci, G. J. A comparison of semantic atructures in Amarican Southwast culture groups. J. abnorme_soc. Prychoi., 1960, 60, 25-30.

Whorf, B. L. Sctence and linguistics. Tecimol. Rex., 1939, 42, 229.

[^0]: *Built by American Atomics Corporation, Tucson, Arizona

[^1]: *Non-Language section of the Callfornia Test of Mental Maturity. *Reading Comprehenelon section of the SRA Achievement Battery.

